2009-2018

SOLVED PAPER 2009

Weekly Wages	No.of Works f	X	fx	fx ²	С.В.	C.F		
30-39	6	34.5	207	7141.5	29.5-39.5	6		
40-49	10	44.5	445	19802.5	39.5-49.5	16		
50-59	11	54.5	599.5	32672.75	49.5-59.5	27		
60-69	12 f _m	64.5	774	49923	59.5-69.5	39		
70-79	32 f _m	74.5	2384	177608	69.5-79.5	71		
80-89	18 f ₂	84.5	1521	128524.5	79.5-89.5	89		
90-99	8	94.5	756	71442	89.5-99.5	97		
Total	$\sum f = 97$		6696.5	487114.25	\sim			
(a)	Mode	$= l + \frac{1}{(f_n)}$ $= 69.5 + 100$	$\frac{f_m - f_1}{f_n - f_1) + (f_m - f_2)}$ $\frac{32 - 12}{(32 - 12) + (22 - 12)}$	$\frac{1}{2}xh$ x 10)			
$=69.5 + \frac{20 \times 10}{20 + 14}$ = 75.38								
(b)	Median	$= l + \frac{h}{f} \left(\frac{1}{2}\right)$ $= 69.5 + \frac{1}{2}$	$\frac{n}{2} - c$) $\frac{10}{485} - c$	39)	$\frac{n}{2} = \frac{97}{2} = 48.5$	5 = 10 C = 39		
	~	= 72.47	32 (10.5		<i>t</i> 07.5, 11	10, 0 57		
(c)	C.V	$=\frac{s}{\bar{x}} \ge 100$)%					
where x $=\frac{\Sigma fx}{\Sigma f} = \frac{6686.5}{97} = 68.93$								
	S	$=\sqrt{\frac{\sum fx^2}{\sum f}}$	$-(\frac{\Sigma f x}{\Sigma f})^2$					
		$=\sqrt{\frac{48711}{97}}$	$\frac{4.25}{7} - (\frac{668}{9})$	$(\frac{36.5}{7})^2$				

QUESTION NO. 1: SOLUTION

	$=\sqrt{5021.796-(68.93)^2}$
	= 16.45
C.V	$=\frac{s}{\bar{x}} \ge 100\%$
	$=\frac{16.45}{68.93} \ge 100\%$
	= 23.86%

(a) Consider the year 1950 as base year for the price relatives of commodities A, B, C and D.

Voor	Price Relatives			Link Relatives				СM	Chain	
rear	Α	В	С	D	Α	В	C ·	D	G.M.	Indices
1950	100	100	100	100	-	-><	\sim	-	-	100
1951	81	77	119	55	81	• 77	119	55	79.93	79.93
1952	62	54	128	52	76.5	70.1	107.6	94.5	85.93	68.68
1953	104	87	111	100	167.7	161.1	86.7	192.3	145.68	100.06
1954	93	75	154	96	89.4	86.2	138.7	96.0	100.65	100.71
1955	60	43	165	88	64.5	57.3	107.1	91.7	77.62	78.12

(b) Since one card is drawn from 52 playing cards:

(i)

$$n(S) = {\binom{52}{1}} = 52$$

$$A = Black Card$$

$$n(A) = {\binom{26}{1}} {\binom{26}{0}} = \frac{1}{2}$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{26}{52} = \frac{1}{2}$$

(ii) B = Black Card

$$n(B) = {\binom{16}{1}\binom{36}{0}} = 16$$

$$P(B) = \frac{n(B)}{n(S)} = \frac{16}{52} = \frac{4}{13}$$

- = given population = 2, 4, 6, 10 Х
- = population size = 4 Ν
- = Sample size = 2n

	n Sam		-							
All possible samples (w.o.r) = $\binom{N}{n} = \binom{4}{2} = 6$										
Sr.No.	Samples	Means (x)	~O``							
1	2,4	3								
2	2,6	4	xS°							
3	2, 10	6								
4	4,6	5	· . 6 . ·							
5	4, 10	7	210							
8	6, 10	8								

Probability distribution of samples means:

$\overline{\overline{\mathbf{X}}}$	Tally Sheet	f	$P(\overline{x}) = \frac{f}{\Sigma f}$	$\overline{\mathbf{x}} p(\overline{\mathbf{x}})$	$\overline{\mathbf{x}}^2 \mathbf{p}(\overline{\mathbf{x}})$
3	1	1	1/6	3/6	9/6
4	1	1	1/6	4/6	16/6
5	1	1	1/6	5/6	25/6
6	1	1	1/6	6/6	36/6
7	1	1	1/6	7/6	49/6
8	1	1	1/6	8/6	64/6
Total		$\sum f = 6$		33/6	199/6

Mean and variance of sampling distribution of means:

$$\mu_{\overline{x}} = \sum \overline{x} P(\overline{x}) = \frac{33}{6} = 5.5$$

$$\sigma_{\overline{x}}^{2} = \sum \overline{x}^{2} P(\overline{x}) - (\mu_{\overline{x}})^{2}$$

$$=\frac{199}{6} - (5.5)^2$$
$$= 2.92$$

Mean and Variance of population:	Mean	and V	/ariance	of po	pulation:
----------------------------------	------	---------	----------	-------	-----------

	X		\mathbf{X}^{2}		
	2		4		
	4		16		
	6		36		
	10		100		
Σ	x = 22		$\sum x^2 = 156$		\sim
Verif	μ σ ² ficatio	$= \frac{\sum x}{N}$ $= \frac{\sum x}{n}$ $= \frac{15}{4}$ $= 8.'$	$\frac{2}{5} = \frac{22}{4} = 5.5$ $\frac{x^2}{4} - \mu^2$ $\frac{6}{5} - (5.5)^2$ $\frac{76}{5} = \frac{1}{5}$	Paksien	5.0
(i)	$\mu_{\overline{x}}$	=	μ		
	5.5	=	5.5		
(ii)	$\sigma_{\overline{x}}^{2}$	=	$\frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$		
	2.92	=	$\frac{8.75}{2} \chi \frac{4-2}{4-1}$		
	2.92	=	2.92		

(a) H_0 : There is no association between general ability and mathematical ability.

H₁: There is some association between general ability and mathematical ability.

Level of significance:	$\alpha = 0.05$, $1 - \alpha = 0.95$
Test statistics:	$x^{2} = \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$
Degrees of freedom:	v = (r-1)(c-1)
	=(3-1)(3-1)
	$= 2 \times 2 = 4$
Critical Value:	$x_{n,1-\alpha}^2 = x_{4,0.95}^2 = 9.49$
Critical region:	$x^2 > 9.49$ Critical
Decision rule:	Reject H ₀ , if $x^2 > 9.49$, Acceptance region
	Otherwise accept H_0 . / region
	0 9.49

Observed Frequency (O_{ij})

Mathematical	Ge	Total			
Ability	Good	Fair	Poor	10(4)	
Good	44	22	4	70	
Fair	265	257	178	700	
Poor	41	91	98	230	
Total	350	370	280	1000	

O _{ij}	e _{ij}	$\mathbf{o}_{ij} - \mathbf{e}_{ij}$	$(\mathbf{o}_{ij} - \mathbf{e}_{ij})^2$	$(0_{ij} - e_{ij})^2 / e_{ij}$
44	24.5	19.5	380.25	15.5204
265	245	20	400	1.6327
41	80.5	-39.5	1560.25	19.3820
22	25.9	-3.9	15.21	0.5873
257	259	-2	4	0.0154
91	85.1	5.9	34.81	0.4090
4	19.6	-15.6	243.36	12.4163

Business Statistics & Mathematics Punjab University B.Com Part 1 Solved Past Papers

2009-2018

178	196	-18	324	1.6531
98	64.4	33.6	1128.96	17.5304
Total				69.1466

Conclusion: Since $x^2 = 69.1466 > x_{4,0.95}^2 = 9.49$

So, we reject H_0 .

Regression coefficient of y on x:

$$b_{yx} = \frac{n\sum xy - \sum x \cdot \sum y}{n\sum x^2 - (\sum x)^2}$$
$$= \frac{8 \times 94.7 - 17.6 \times 32.8}{8 \times 49.64 - (17.6)^2}$$
$$= \frac{180.32}{87.36} = 2.064$$

Regression coefficient of x on y:

$$= \frac{8 \times 94.7 - 17.6 \times 32.8}{8 \times 49.64 - (17.6)^2}$$

= $\frac{180.32}{87.36} = 2.064$
ession coefficient of x on y:
 $b_{xy} = \frac{n \sum xy - \sum x \cdot \sum y}{n \sum y^2 - (\sum y)^2}$
= $\frac{8 \times 94.7 - 17.6 \times 32.8}{8 \times 182 - (32.8)^2}$
= $\frac{160.32}{380.16} = 0.474$

a) Solve the Equation for x

$$\sqrt{5x-4} - \sqrt{3x+1} = 1$$

Taking square on both sides:

$$(\sqrt{5x-4} - \sqrt{3x+1})^2 = (1)^2$$

$$(5x+4) + (3x+1) - 2\sqrt{5x-4}\sqrt{3x+1} = 1$$

$$5x+4+3x+1 - 2\sqrt{(5x-4)(3x+1)} = 1$$

$$8x+5 - 2\sqrt{15x^2+5x+12x+4} = 1$$

$$-2\sqrt{15x^2+17x+4} = 1 - 8x - 5$$

$$-2\sqrt{15x^2+17x+4} = -4 - 8x$$

$$-2\sqrt{15x^2+17x+4} = -2(2+4x)$$

$$\sqrt{15x^2+17x+4} = 2 + 4x$$

Again, taking square on both sides:

$$15x^{2} + 17x + 4 = (2 + 4x)^{2}$$
$$15x^{2} + 17x + 4 = 4 + 16x^{2} + 16x$$
$$-x^{2} + x = 0$$
$$-x(x - 1) = 0$$

Solution set is $\{0, 1\}$

Website: www.paksights.com

(b) $\frac{x+1}{3x} = \frac{1}{x} - \frac{1}{3}$ $\frac{x+1}{3x} = \frac{3-1}{3x}$ x+1 = 3 - xx + x = 3 - 12x = 2x = 1

Solution set is $\{1\}$

				QUI	ESTIC	ON NO	. 6	<u>)</u>	
(a)		2x +	- 6y + 4	4z	=	320	5.	(i)	
		6x +	- 6y + 4	4z	=•	480		(ii)	
		3x +	- 2y + 4	4z	Æ	192		(iii)	
	Subtract ec	luation	n (i) fro	om (ii),	we g	et:			
		6x +	- 6y + 4	4z	=	480			
		_2x <u>+</u>	<u>- 6y +</u>	4z	=	_ 320			
		4x			=	160			
		x	=	160/	4	=	40		
	Subt	ract e	quatior	n (iii) fi	rom (i	i), we g	et:		
		6x +	- 6y + 4	4z	=	480			
		_3x <u>+</u>	<u>-</u> 2y <u>+</u> 4	4z	=	192			
		3x +	- 4y		=	288		(iv)	

Put x = 40 in eq. (iv): 3(40) + 4y =288 4y = 288 - 12042 = У Put x = 40 and y = 42 in eq. (i): 320 2(40) + 6(42) + 4z =4z = 320 - 120z = -3 Solution set is $\{(40, 42, -3)\}$ We have: $a_{10} = 20$ and $a_{20} = 40$, Find a_7 of the A.P. **(b)** = a + (n - 1)d Since an = a + (10 - 1)d a_{10} a + 9da + (20 - 1)d.....(i) 20 a₂₀(ii) a + 19d 40

Subtract equation (i) from (ii), we get:

$$40 = a + 19d$$

$$20 = a \pm 9d$$

$$20 = 10d$$

$$d = 2$$

Put d = 2 in eq. (i)

Website: www.paksights.com

			20	=	a + 9 (2)				
			а	=	20-18	= 2			
			а	=	2				
Now, 7 th term of the A.P. is									
			a_7	=	a + (7 – 1)d				
				=	$2 + 6 \ge 2 =$	14			
					AUESTIA		- ^	•	
QUESTION NO. 7									
(a)		Р	=	Princ	ipal amount	=	?0	Φ	
		i	=	Interr	nal rate	= X	5% p.a.	=	0.05
		n	=	No. o	f periods		3 years		
Now, difference between compound interest and simple interest = Rs. 61									
$P[(1 + i)^n - 1] - P x i x n = Rs. 61$									
	$P[(1+0.05)^3 - 1] - P \ge 0.05 \ge 3 = 61$								
	$P[(1.05)^3 - 1] - 0.15P = 61$								
	0.157625P - 0.15P = 61								

0.007625P =61

$$P = \frac{61}{0.007625}$$

= Rs. 8000 Р

Thus, principal amount is Rs. 8000.

(b)

R = Rs. 5000 (Payable at the end of the each quarter. It is ordinary annuity)

n = 5 years = $5 \times 4 = 20$ quarters

i = 8% p.a.
$$=\frac{0.08}{4} = 0.02$$
 per quarters

The accumulated value is:

$$S_{n} = R \frac{(1-i)^{n}-1}{i}$$

$$= 5000 \frac{(1-0.02)^{20}-1}{0.02}$$

$$= 5000(24.29737) = Rs. 121486.85$$

QUESTION NO. 8

(i) A matrix is defined as the set of real numbers arranged in the form of rectangular array of numbers enclosed in brackets. Generally, matrices are represented by capital letters such as A, B. c. e etc. For example:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 2 & 46 \\ 8 & 01 \end{bmatrix} \text{ etc.}$$

- (ii) A specific number which is multiplied to every next term in a geometric sequence. It is represented by "r".
- (iii) Compound interest is an interest paid on the initial principal and previously earned interest.

C.I =
$$P[(1+i)^n - 1]$$

where C.I = Compound interest

i = Interest rate

n = Number of periods

(iv) When the payments are made at beginning of each period and continue for a definite period, it is called annuity due.

Sum of annuity due:

$$S_n = R\left[\frac{(1+i)^{n+1}-1}{i}\right] - R$$

Where R = Regular installment

i = Interest rate

n = Number of periods

(v) The totality of observation in particular situation is called population.

(vi) A sample is a subgroup of the population that will represent the characteristics of the population whereas sampling is the procedure of selecting a representative sample from a given population.

- (vii) Correlation is a measure of the degree to which any two variables vary together.
- (viii) The square root of the average of all squared deviations taken from A.m. is called standard deviation.

S =
$$\sqrt{\frac{\Sigma(x-\bar{x})^2}{n}}$$
 and S = $\sqrt{\frac{\Sigma f(x-\bar{x})^2}{\Sigma f}}$

- (ix) The tendency of the values to concentrate at their centre is called central tendency and any measure indicating the centre of their distribution is called measured central tendency.
- (x) If $x_1, x_2,..., x_n$ are n observations with their respective weights w_1 , w_2 ,..., w_n . Then weighted mean is defined as:

$$\overline{x_n} = \frac{x_1 w_1 + x_2 w_2 + \dots + x_n w_n}{w_1 + w_2 + \dots + w_n}$$
$$= \frac{\sum x_w}{\sum w}$$