Business Statistics & Mathematics Punjab University B.Com Part 1 Solved Past Papers

2011

SOLVED PAPER 2011

Classes	f	X	D	fD	fD ²	C.f		
12.5-17.5	2	15	-20	-40	800	3		
17.5-22.5	22	20	-15	-230	4750	24		
22.5-27.5	19	25	-10	-190	1900	43		
27.5-32.5	14	30	-5	-70	350	57		
32.5-37.5	8	35	-5	-70	350	57		
37.5-42.5	4	40	5	20	100	64		
42.5-47.5	6	45	10	60 🦯	600	70		
47.5-52.5	1	50	15	15	225	71		
52.5-57.5	1	55	20	20	400	72		
	75			-525	9325			

QUESTION NO. 1: SOLUTION

P.M = 35 ,
$$\frac{n}{2} = \frac{72}{2} = 36$$

 $\overline{x} = P.M. + \frac{\sum fD}{\sum f}$
 $= 35 + \frac{-515}{72}$
 $= 35 - 7.153$
 $= 27.847$
Median $= l + \frac{h}{f}(\frac{n}{2} - c)$
 $= 22.5 + \frac{5}{19}(36 - 24)$
 $= 22.5 + \frac{5}{19}(12)$
 $= 22.5 + \frac{60}{19}$
 $= 25.658$

S.D	$= \sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$
	$=\sqrt{\frac{9325}{72}-\ \left(\frac{-515}{72}\right)^2}$
	$=\sqrt{129.5139-51.1622}$
	$=\sqrt{78.3517}$
	= 8.851649564 or 8.852
C.V	$=\frac{S.D}{A.M} \ge 100\%$
	$=\frac{8.852}{27.847} \ge 100\%$
	= 31.788% or $31.79%$
	. 25.

QUESTION NO. 2.

X	У	X ²	\mathbf{y}^2	ху				
5	9	25	81	45				
6	7	3 6	49	422				
7	10	49	100	70				
8	3	64	9	24				
9	13	81	169	117				
10	N.	100	121	110				
11	14	121	196	154				
12	10	144	100	120				
13	14	169	196	182				
14	12	196	144	168				
15	18	225	324	270				
110	121	1210	1489	1308				

$$\overline{\mathbf{x}} \qquad = \frac{\sum \mathbf{x}}{n} = \frac{110}{11} = 10$$

$$\overline{\mathbf{y}} \qquad = \frac{\sum \mathbf{y}}{n} = \frac{121}{11} = 11$$

$$\sigma_{x} = \sqrt{\frac{\Sigma x^{2}}{n} - \left(\frac{\Sigma x}{n}\right)^{2}}$$

$$= \sqrt{\frac{1210}{11} - \left(\frac{110}{11}\right)^{2}}$$

$$= \sqrt{110 - 100}$$

$$= 3.162$$

$$\sigma_{y} = \sqrt{\frac{\Sigma y^{2}}{n} - \left(\frac{\Sigma y}{n}\right)^{2}}$$

$$= \sqrt{\frac{1489}{11} - \left(\frac{121}{11}\right)^{2}}$$

$$= \sqrt{135.3636 - 121}$$

$$= \sqrt{14.3636}$$

$$= 3.79$$

$$r = \frac{\Sigma xy - n.\bar{x}\bar{y}}{n.\sigma_{x}.\sigma_{y}}$$

$$= \frac{130.2 - 11 \times 10 \times 11}{11 \times 3.162 \times 3.79}$$

$$= \frac{92}{131.824}$$

$$= 0.698$$

Line of regression y on x:

$$y - \overline{y} = r \frac{\sigma_x}{\sigma_y} (x - \overline{x})$$

$$y - 11 = 0.698 x \frac{3.79}{3.162} (x - 10)$$

$$= 0.837x - 8.37$$

$$y = 0.837x - 8.37 + 11$$

$$y = 0.837x + 2.63$$

- Given population = 3, 6, 9, 12, 15, 18
 - N = population size = 6
 - n = Sample size = 3

All possible samples without replacement = ${}^{6}C_{3} = 20$

$$\frac{6!}{(6-3)! \cdot 3!} = \frac{6 \times 5 \times 4 \times 3!}{3! \times 3 \times 2 \times 1!} = 20$$

x: $3 + 6 + 9 + 12 + 15 + 18 = 63$
x²: $9 + 36 + 81 + 144 + 225 + 324 = 819$
Population mean $= \frac{\Sigma x}{N} = \frac{63}{6} = 10.5$
Population standard deviation $= \sqrt{\frac{\Sigma X^2}{N} - (\frac{\Sigma X}{n})^2}$
 $= \sqrt{\frac{819}{6} - (\frac{63}{6})^2}$
 $= \sqrt{136.5 - 110.25}$
 $= \sqrt{26.25}$
 $= 5.123$

Sample: (3,6,9), (3,6,12), (3,6,15), (3,6,18), (3,9,12), (3,9,15), (3,9,18)Sample mean: 6, 7, 8. 9. 8. 9. 10 Sample: (3, 12, 15), (3, 12, 18), (3, 15, 18), (6,9, 12), (6,9, 15), (6,9, 18), (6,12,15) Sample mean: 10, 11, 12. 9, 10. 11. 11. (6, 12, 18), (6, 15, 18), (9, 12, 15), (9, 12, 18), (9, 15, 18), (12, 15, 18) Sample: Sample mean: 12, 13, 12, 13. 14. 15

Business Statistics & Mathematics Punjab University B.Com Part 1 Solved Past Papers

$\begin{array}{c} \text{Sample} \\ \overline{x} \end{array}$	Tally	f	$P(\overline{x}) = \frac{f}{\Sigma f}$	$\overline{\mathbf{x}} \mathbf{p}(\overline{\mathbf{x}})$	$\overline{\mathbf{x}}^2 \mathbf{p}(\overline{\mathbf{x}})$
6	1	1	1/20	6/20	36/20
7	1	1	1/20	7/20	49/20
8	11	2	2/20	16/20	128/20
9	111	3	3/20	27/20	243/20
10	111	3	3/20	30/20	300/20
11	111	3	3/20	33/20	363/20
12	111	3	3/20	36/20	432/20
13	11	2	2/20	26/20	338/20
14	1	1	1/20	4/20	196/20
15	1	1	1/20	15/20	225/20
Total		20	1	210/20	2310/20

(5)

Mean of sampling distribution of means:

$$\sum \overline{x} P(\overline{x}) = \frac{210}{20} = 10.5$$

$$\sigma = \sqrt{\sum \overline{x}^2 P(\overline{x}) - [\sum \overline{x}^2 P(\overline{x})]^2}$$

$$= \sqrt{\frac{2310}{20} - (\frac{210}{20})^2}$$

$$= \sqrt{115.5 - (10.5)^2}$$

$$= \sqrt{115.5 - 110.25}$$

$$= \sqrt{5.25} = 2.291$$

QUESTION NO. 4								
	Prices		Quantity					
Commodity	1995	2002	1995	2002	p _o q _o	$\mathbf{p}_{0}\mathbf{q}_{1}$	$\mathbf{p}_1 \mathbf{q}_0$	$\mathbf{p}_1 \mathbf{q}_1$
	po	p ₁	qo	q ₁				
А	60	80	270	290	16200	17400	21600	23200
В	40	45	125	140	5000	5600	5625	6300
С	20	25	130	140	2600	2800	3250	3500
D	55	70	270	350	14850	19250	18900	24500
Total					38650	45050	49375	57500
Price index number by:								
(i) Laspey	i) Laspeyr's $=\frac{\sum p_1 q_0}{\sum p_0 q_0} \ge 100$							
(ii) Fisher's $= \frac{49375}{38650} \times 100$ $= 127.75$ $= \sqrt{\frac{\Sigma p_1 q_0}{\Sigma p_0 q_0}} \times \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1} \times 100$ $= \sqrt{\frac{49375}{38650}} \times \frac{57500}{45050} \times 100$								
(iii) Paasch	e's		$= \sqrt{1.6}$ $= 127.6$ $= \frac{\sum p_1 q_1}{\sum p_0 q_1}$ $= \frac{57500}{45050}$ $= 127.6$	59 - x 100 - x 100	06 x 100			
(iv) Maraha	all			$\sum_{0}^{+\sum p_1 q_1} x_{0}^{+\sum p_0 q_1} x_{0}^{+\sum p_0 q_1}$	x 100			

$$= \frac{49375 + 57500}{38650 + 45050} \times 100$$
$$= \frac{106875}{83700} \times 100$$
$$= 127.69$$

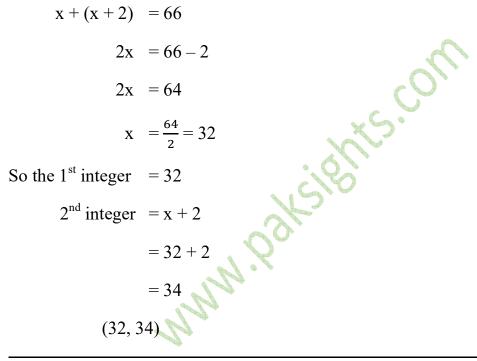
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 0 \\ 4 & 5 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 & 5 & 4 \\ 0 & 3 & -5 \\ -1 & 4 & 2 \end{bmatrix}$$

(i) $A - 3B = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 0 \\ 4 & 5 & 6 \end{bmatrix} - 3\begin{bmatrix} -2 & 5 & 4 \\ 0 & 3 & -5 \\ -1 & 4 & 2 \end{bmatrix}$
$$= \begin{bmatrix} 1 + 6 & 3 - 15 & 2 - 12 \\ 3 - 0 & 2 - 9 & 0 + 15 \\ 4 + 3 & 5 - 13 & 6 - 6 \end{bmatrix}$$
$$= \begin{bmatrix} 7 & 12 & -10 \\ 3 & -7 & 15 \\ 7 & 7 & 0 \end{bmatrix}$$

(i) $AB = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 0 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} -2 & 5 & 4 \\ 0 & 3 & -5 \\ -1 & 4 & 2 \end{bmatrix}$
$$= \begin{bmatrix} -2 + 0 - 2 & 5 + 9 + 8 & 4 - 15 + 4 \\ -6 + 0 + 0 & 15 + 6 + 0 & 12 - 10 + 0 \\ -8 + 0 - 6 & 20 + 15 + 24 & 16 - 25 + 12 \end{bmatrix}$$
$$= \begin{bmatrix} -4 & 22 & -7 \\ -6 & 21 & 2 \\ -14 & 59 & 3 \end{bmatrix}$$

(a)
$$x^{2} + 5x = 50$$

 $x^{2} + 10x - 5x - 50 = 0$
 $x(x + 10) - 5(x + 10) = 0$
 $x + 10 = 0$ or $x - 5 = 0$
 $x = -10$ or $x = 5$
or $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $= \frac{-5 \pm \sqrt{5^{2} - 4x \pm x(-50)}}{2 \times 1}$
 $= \frac{-5 \pm 15}{2} = \frac{-20}{2} = -10$
 $= \frac{-5 \pm 15}{2} = \frac{10}{2} = 5$
(OR)
 $x^{2} + 5x = 50$
 $x^{2} + 2(\frac{5}{2}x) = 50$
 $x^{2} + 2(\frac{5}{2}x) + (\frac{5}{2})^{2} = 50 + (\frac{5}{2})^{2} = 56.25$
 $(x + \frac{5}{2})^{2} = 56.25 = (\sqrt{56.25})^{2}$
 $x + \frac{5}{2} = \sqrt{56.25} = \pm 7.5$


x =
$$7.5 - \frac{5}{2} = 5$$

x =
$$-7.5 - \frac{5}{2} = -10$$

(b) Suppose 1^{st} even integer = x

Then 2^{nd} even integer = x + 2

Sum of the two even interger = x + (x + 2) = 66

QUESTION NO. 7

(a) Given for A.P.: $a_{54} = -61$ and $a_4 = 64$ $a_x = a + (x - 1)d$ $a_{54} = a + (54 - 1)d = -61$ a + 53d = -61(i) $a_4 = a + (4 - 1)d = 64$

$$a + 3d = 64 \qquad \dots \dots (ii)$$

$$a \pm 53d = +61 \qquad \dots \dots (i)$$

$$-50d = 125 \qquad \dots \dots (i)$$

$$d = \frac{125}{-50} = -2.5$$

By putting the value of d in equation (i), we get:

$$a + 53d = -61$$

$$a + 53(-2.5) = -61$$

$$a + (-132.5) = -61$$

$$a = -61 + 132.5 = 71.5$$

$$a_{23} = a + (23 - 1)d$$

$$= 71.5 + 22(-2.5)$$

$$= 71.5 - 55$$

$$= 16.5$$

(b) Sum of $0.53 + 0.0053 + 0.000053 + \dots$ to infinity

Where a = 0.53, r =
$$\frac{0.0053}{0.53} = 0.01 < 1$$

So, S_n = $\frac{a}{1-r}$
= $\frac{0.53}{1-0.01}$
= $\frac{0.53}{0.99}$
= $\frac{53}{99}$

Suppose the original value of property = x(a) 1 + year loss = x (10/100) = 0.10xRemaining value after 1^{st} loss= x - 0.10x = 0.90x 2^{nd} year loss = 0.81x x 10% = 0.09x Remaining value 2^{nd} loss = 0.90x - 0.09x = 0.81x 3^{rd} year loss = 0.81x x 10% = 0.081x 0.081x = 202.5 or $x = \frac{202.5}{0.081} = \text{Rs. } 2500$ Given: Compound interest – Simple interest = Rs. 31(b) 3 years simple interest $= x \left(\frac{10}{100}\right)(3) = 0.300x$ 3 year compound interest = $x(1 + \frac{10}{100})^3 - x = x(1.10)^3 - x$ = 1.331x - x = 0.331x0.331x - 0.300x = Rs.310.031x = Rs. 31 $x = \frac{31}{0.031} = \text{Rs. 1000}$