SOLVED PAPER 2013

QUESTION NO. 1

Weight	f	x	fx	fx ²
118-126	20	122	2440	297680
127-135	35	131	4585	600635
136-144	49	140	6860	960400
145-153	32	149	4768	710432
154-162	25	158	3950	624100
163-171	14	167	2338	390446
	175		$\sum \mathbf{f} \mathbf{x} = 24941$	$\sum fx^2 = 3583693$

	$=\sqrt{166.29}$	531		
S.D.	= 12.869			
median and quartil	es, we consider the	following table:		
Weight	С.В.	F	C.f	
118-126	117.5-126.5	20	20	
127-135	126.5-135.5	35	55	→ Q1
136-144	135.5-144.5	49	104	→ Median
145-153	144.5-153.5	32	136	→ Q ₃
154-162	153.5-162.5	25	161	
163-171	162.5-171.5	14	175	
Median	$=l+\frac{h}{f}\left(\frac{n}{2}-\frac{h}{2}\right)$	- c)		
$\frac{n}{2}$	$=\frac{175}{2}=87.5$		and a	
1	= 135.5		C	
h	= 9	w.	•	
f	= 49			
С	= 55	KSie		
Median	$=135.5+\frac{2}{4}$	9. .9 (87.5 – 55)		
	= 134.5 + 5.	.969		
Median	= 141.47			
Q ₁	$= l + \frac{h}{f} \left(\frac{n}{2} - \frac{h}{2}\right)$	-c)		
$\frac{n}{4}$	$=\frac{175}{4}=43.75$	5		
1	= 126.5			
h	= 9			
f	= 35			
С	= 20	a		
Q ₁	$=126.5 + \frac{3}{3}$	$\frac{5}{5}(43.75-20)$		
	= 126.5 + 6.	.1071		

For

$Q_1 = 132.6$	1
$Q_1 = 132.6$	1

Q3

$$= l + \frac{h}{f} \left(\frac{3n}{4} - c\right)$$

$$\frac{3n}{4} = \frac{3x175}{4} = 131.25$$

$$Q_3 = 144.5 + \frac{9}{32}(131.25 - 104)$$

$$= 144.5 + 7.664$$

$$Q_3 = 152.16$$

QUESTION NO. 2

Commodity	20	08	20	12	na		na	na
Commonly	p _o	qo	pn	q _n	Pn q o	P ₀ q ₀	Pnqn	Poqn
А	5.0	80	8.7	100	696	400	870	500
В	3.6	90	5.7	95	513	324	541.5	342
С	3.1	20	4.6	30	92	92	138	93
					1301	786	1549.5	935

Laspreyr's price index	$=\frac{\sum p_n q_o}{\sum p_o q_o} \ge 100$
L.	$=\frac{1301}{786} \ge 100$
	= 165,52
Paasche's price index	$=\frac{\sum p_n q_n}{\sum p_o q_n} \ge 100$
	$=\frac{1549.5}{935} \ge 100$
	= 165.72
Marshall's price index	$= \frac{\sum p_n q_o + \sum p_n q_n}{\sum p_o q_o + \sum p_o q_n} \ge 100$
	$=\frac{1301+1549.5}{786+935} \ge 100$
	$=\frac{280.5}{1721} \ge 100$
	= 165.63

Business Statistics & Mathematics Punjab University B.Com Part 1 Solved Past Papers

Fisher's price index

 $=\sqrt{Laspeyre's index \times Paasche's index}$

 $=\sqrt{165.52 \times 165.72}$

= 165.621

QUESTION NO. 3

- (i) H_o: Income and type of school are independent.
 - H_I: Income and type of school are dependent.
- Level of significance $= \alpha = 5\% = 0.05$ (ii)
- Test statistic following x^2 distribution at 1 d.f. $x^2 = \sum_{E} \frac{(O-E)^2}{E}$ **Critical Region:** $x_{cal}^2 \ge x_{tab}^2$ $x_{cal}^2 \ge 3.84$ (iii)

(iv)

Income	Private	Government	Total
High	$\frac{1000x656}{1600} = 410$	$\frac{1000x944}{1600} = 590$	1000
Low	$\frac{600x656}{1600} = 246$	$\frac{600x944}{1600} = 354$	600
	656	944	1600

Calculation of x^2 value is shown below

O (Observed Frequency)	E (Expected Frequency)	O – E	$(\mathbf{O}-\mathbf{E})^2$	$(\mathbf{O}-\mathbf{E})^2/\mathbf{E}$
494	410	84	7056	17.20976
506	590	-84	7056	11.95932
162	246	-84	7056	28.68293
438	354	84	7056	19.93220
				77.78421

Conclusion: Since $x_{cal}^2 = 77.78 > 3.84$ so it falls in critical region, we reject H_o and conclude that income and type of school are dependent.

QUESTION NO. 4

ts.con

(i)

Population elements = 0, 3, 6, 12, 15,18

Population Size = N = 6

Sample Size = n= 3

Let x denotes the element of population

X	\mathbf{X}^{2}
0	0
3	9
6	36
12	144
15	225
18	324
∑X=54	$\Sigma X^2 = 738$

Population mean $\mu = \frac{\sum X}{N} = \frac{54}{6} = 9$

Population Variance = $\sigma^2 = \frac{\Sigma x^2}{N} - \left(\frac{\Sigma x}{N}\right)$

$$\sigma^2 = \frac{738}{6} - (9)^2 = 123 - 81 = 42$$

Number of all possible samples without replacement = ${}^{N}C_{n} = {}^{6}C_{3} = 20$ Sample with corresponding means are given below:

Samples	Sample mean (x)	Samples	Sample mean (x)
0, 3, 6	3	3, 6, 12	7
0, 3, 12	5	3, 6, 15	8
0, 3, 15	6	3, 6, 18	9
0, 3, 18	7	3, 12, 15	10
0, 6, 12	6	3, 12, 18	11
0, 6, 15	7	3, 15, 18	12
0, 6, 18	8	6, 12, 15	11
0, 12, 15	9	6, 12, 18	12
0, 12, 18	10	6, 15, 18	13
0, 15, 18	11	12, 15, 18	15

x	f	$P(\overline{x})$	$\overline{\mathbf{x}}$. P($\overline{\mathbf{x}}$)	$\overline{\mathbf{x}}^2$. P($\overline{\mathbf{x}}$)		
3	1	1/20	3/20	9/20		
5	1	1/20	5/20	25/20		
6	2	2/20	12/20	72/20		
7	3	3/20	21/20	147/20		
8	2	2/20	16/20	128/20		
9	2	2/20	18/20	162/20		
10	2	2/20	20/20	200/20		
11	3	3/20	33/20	363/20		
12	2	2/20	24/20	288/20		
13	1	1/20	13/20	169/20		
15	1	1/20	15/20	225/20		
	$\sum f = 20$		180/20	1788/20		
Mean of sampling distribution of means						
$\mu_{\overline{x}} = \overline{x} \cdot P(\overline{x}) = \frac{180}{20} = 9$						
Variance of sampling Distribution						
$\sigma_{\overline{\mathbf{x}}}^2 = \sum \overline{\mathbf{x}}^2 \mathbf{P}(\overline{\mathbf{x}}) - \left[\sum \overline{\mathbf{x}} \mathbf{P}(\overline{\mathbf{x}})\right]^2$						

Sampling distribution of means is given below:

$$\mu_{\overline{x}} = \overline{x} \cdot P(\overline{x}) = \frac{180}{20} = 9$$

$$\sigma_{\overline{x}}^{2} = \sum \overline{x}^{2} \mathbf{P}(\overline{x}) - \left[\sum \overline{x} \mathbf{P}(\overline{x})\right]^{2}$$
$$= \frac{1788}{20} - (9)^{2}$$
$$= 89.4 - 81$$
$$\sigma_{\overline{x}}^{2} = 8.4$$

Relationship between sampling distribution of the means $\mu_{\overline{x}}$ and population mean (μ) (i) is:

Verification:

$$\mu_{\overline{x}} = \mu$$

Verification:

$$\mu_{\overline{x}} = 9$$
, $\mu = 9$

 $= \mu$ (Both are equal) Hence, $\mu_{\overline{x}}$

(ii) Relationship between variance of sampling distribution $(\sigma_{\overline{x}}^{2})$ and population variance σ^{2} is:

$$\sigma_{\overline{x}}^{2} = \frac{\sigma^{2}}{n} \frac{N-n}{N-1}$$

Verification: Since, $\sigma_{\overline{x}}^2 = 8.4$

And
$$\frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$$

= $\frac{42}{3} \times \frac{6-3}{6-1}$
= $14 \times \frac{3}{5}$
= 8.4

So,

$$\sigma_{\overline{x}}^2 = \frac{\sigma^2}{n} \cdot \frac{N-n}{N-1} = 8.4$$
 Verified

QUESTION NO. 5

is.com

$\mathbf{A} = $	1	3	5
	4	-2	7
	3	2	_4]
<i>A</i> =	1	3	5
	4	-2	7
	3	2	_4

Expanding from 1st Row:

$$|A| = 1 \begin{vmatrix} -2 & 7 \\ 2 & -4 \end{vmatrix} - 3 \begin{vmatrix} 4 & 7 \\ 3 & -4 \end{vmatrix} + 5 \begin{vmatrix} 4 & -2 \\ 3 & 2 \end{vmatrix}$$
$$= 1 (8-14) - 3 (-16-21) + 5(8+6)$$
$$= 1 (-6) - 3 (-37) + 5(14)$$

= -6 + 111 + 70|A| = 175

$$Adj A = \begin{pmatrix} |-2 & 7| & |-4 & 7| & |4 & -2| \\ 2 & -4| & |3 & -4| & |3 & 2| \\ & |-3 & 5| & |1 & 5| & |-1 & 3| \\ 2 & -4| & |3 & -4| & -|3 & 2| \\ & |-2 & 7| & |4 & 7| & -|4 & -2| \end{pmatrix}^{t}$$

$$= \begin{pmatrix} (8-14) & -(-16-21) & (8+6) \\ -(-12-10) & (-4-15) & -(2-9) \\ (21+10) & -(7-20) & (-2-12) \end{pmatrix}^{t}$$

$$= \begin{bmatrix} -6 & 37 & 14 \\ 22 & -19 & 7 \\ 31 & 13 & -14 \end{bmatrix}^{t}$$
After taking Transpose
$$Adj A = \begin{bmatrix} -6 & 22 & 31 \\ 37 & -19 & 13 \\ 14 & 7 & -14 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} adj. (A)$$

$$=\frac{1}{175}\begin{bmatrix}-6 & 22 & 31\\37 & -19 & 13\\14 & 7 & -14\end{bmatrix}$$

1	<u>−6</u>	22	³¹
	175	175	175
_	37	-19	13
	175	175	175
	14	7	-14
I	L ₁₇₅	175	₁₇₅ 」

QUESTION NO. 6

(a) 4x - 3y = 10

5x - 7y = 6

Multiplying eq. (1) by 5 and eq. (2) by 4 and then subtracting the resultant equations:

Or	(i)	20x <u>-</u> 15y	= 50
	(ii)	20x <u>+</u> 28y	=_24
		13y	= 26
		у	$=\frac{26}{13}=2$
By p	utting th	ne value of y in	equation (i):
		4x - 3(2)	= 10
		4x - 6	= 10
		4x	= 10 + 6
		4x	= 16
		X	= 16/4
		Х	= 4

Hence, Solution set = $\{[4, 2]\}$

Business Statistics & Mathematics Punjab University B.Com Part 1 Solved Past Papers

QUESTION NO. 6 (b) Let, Length of rectangular plot = x yards Width of rectangular plot = y yards Area of rectangular plot = 2000 sq.yards 2000(1) xy = .net 180 yards Total length of the fencing Perimeter == 2x + 2y =180 2(x+y) =180 X+Y =180/290 X+y =From eq. (2) = 90-x Y Putting in rq. (1): X(90-x) = 2000 $90x - x^2 = 2000$ x2 - 90 x + 2000 = 0Or 1 = а -90 b = 2000 с =

x =	$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$
=	$\frac{-(-90)\pm\sqrt{(-90)^2-4(1)(2000)}}{2(1)}$
=	$\frac{90 \pm \sqrt{8100 - 8000}}{2}$
=	$\frac{90\pm\sqrt{100}}{2}$
=	$\frac{90\pm10}{2}$
Х	$=$ $\frac{90+10}{2}$, X $=$ $\frac{90-10}{2}$
	$=$ $\frac{100}{2}$, $=$ $\frac{80}{2}$
	50 40
For X = 50	ANN .
Putting in y	= 90-x
	= 90 - 50
Y	=40
For $X = 40$	
Putting in y	= 90 - x = 90 - 40

50 Y =

Hence,

If length of the plot	=	50 yards
Then width of the plot	=	40 Yards

And if

If length of the plot	=	40 yards
Then width of the plot	=	50 Yards

QUESTION NO. 7

1

(a) The given geometric series is:

$$1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}, -\frac{1}{32}, \dots \dots$$

$$a = 1$$
Common ratio = $\frac{-1/2}{l} = -\frac{1}{2} = r$
Since, $|r| = |-1/2| < 1$
So, we use the formula for sum as:
$$S_n = a(\frac{a-rn}{1-r})$$
Where
$$a = 1$$

$$r = -\frac{1}{2}$$

$$\mathbf{r} = -\frac{1}{2} \mathbf{n} = 10$$

$$\mathbf{S}_{10} = \frac{1 - (-\frac{l}{2})l\theta}{1 - (-\frac{l}{2})}$$

$$= \qquad \qquad \left(\frac{1 - \frac{l}{2}l\theta}{1 + \frac{l}{2}}\right)$$

$$\mathbf{S}_{10} = \left(\frac{341}{512}\right)$$

Hence, Sum of 10 terms of geometric series is $\frac{341}{512}$

(b) 1^{st} alternative of the executive = Rs. 240,000

2nd Alternative can be written in monthly sequence for first month , 2nd month , 3rd month , etc as below:

Sn

Rs. 100, Rs. 200, Rs. 400,..... upto 12 terms.

This makes a geometric sequence where:

a = 100
r =
$$\frac{200}{100} = 2$$

n = 12

Sum of 12 month salary =

$$= \frac{a(r^{n} - 1)}{r - l}$$

$$= \frac{100(2^{l2} - l)}{2 - l}$$

$$= 100 (4096 - 1)$$

$$= 100(4095)$$

$$= \text{Rs. } 409,500$$

Per year salary for 1 st alternative	=	Rs. 240,000			
Per year salary for 2 nd alternative	=	Rs. 409,500			
Since, Rs. 409,500 > Rs. 240,000					
The executive should prefer 2 nd alternative.					

QUESTION NO. 8				
(a) Principal amount = P	= Rs. 4,500			
Rate of interest for 1 st year r	= 4%			
Compound amount after first year	$= P(1+r)^n$			
Where $m = 1$ We have:	$=4500(1+0.04)^{1}$			
	= 4500 (1.04)			
	= Rs. 4680			
Principal amount for 2 nd Year=	P = Rs. 4680			
Rate of interest for 2 nd year r	= 5%			
Compound amount after 2 nd year	$= P(1+r)^n$			
	= 4680 (1+0.05)			
	= 4680 (1.05)			
	= Rs. 4914			
Principal amount for 3 rd Year	= P $=$ Rs. 4914			
Rate of interest for 3 rd year r	= 6%			
Compound amount after 3 rd year	$= P(1+r)^n$			
	= 4914 (1+0.06)			
	= 4914(1.06)			
	= Rs. 5208.84			
Hence, Compound interest for 3 Years	= 5208.84 - 4500			
=	Rs. 708.84			

- (b) Since the investment of equal size made at the end of each quarter, and we have to find the accumulated value. The problem is related to sum of ordinary annuity we have
 - R = Rs. 5000 (Each Periodic Payment) I = 8%/4 = 2% = 0.02 (Quarterly Interest Rate)

n- $5 \times 4 = 20$ Quarters (Number of conversion periods)

So, the required accumulated value is given by the formula:

