Business Statistics \& Mathematics Punjab University B.Com Part 1 Solved Past Papers

SOLVED PAPER 2013

QUESTION NO. 1

Weight	\mathbf{f}	\mathbf{x}	$\mathbf{f x}$	$\mathbf{f x}^{2}$
$118-126$	20	122	2440	297680
$127-135$	35	131	4585	600635
$136-144$	49	140	6860	960400
$145-153$	32	149	4768	710432
$154-162$	25	158	3950	624100
$163-171$	14	167	2338	390446
	$\mathbf{1 7 5}$		$\sum \mathbf{f x}=\mathbf{2 4 9 4 1}$	$\sum \mathbf{f x}^{2}=\mathbf{3 5 8 3 6 9 3}$

Pearson's coefficient of skewness $\quad=\frac{3(\text { Mean }- \text { Median })}{S . D}$

$$
\begin{aligned}
& =\frac{3(142.52-141.47)}{12.896} \\
& =\frac{3.15}{12.896} \\
& =0.244
\end{aligned}
$$

$$
\text { Bowley's coefficient of skewness } \begin{aligned}
&=\frac{Q_{3}+Q_{1}-2 \text { Median }}{Q_{3}-Q_{1}} \\
&=\frac{152.16+132.61-2(141.47)}{152.16-132.61} \\
&=\frac{1.834}{19.554} \\
&=0.0938
\end{aligned}
$$

$$
\begin{aligned}
& \text { Arithmetic mean }=\overline{\mathrm{x}} \\
&=\frac{\sum \mathrm{fx}}{\sum \mathrm{f}} \\
&=\frac{24941}{175}=142.52 \\
& \text { Standard Deviation }= \sqrt{\frac{\sum f x^{2}}{\sum \mathrm{f}}-\left(\frac{\sum \mathrm{fx}}{\sum \mathrm{f}}\right)^{2}} \\
&=\sqrt{\frac{3583693}{175}-\frac{24941}{175}} \\
&=\sqrt{\frac{3583693}{175}-\frac{24941}{175}} \\
&=\sqrt{20478.24571-20311.9504}
\end{aligned}
$$

Business Statistics \& Mathematics Punjab University B.Com Part 1 Solved Past Papers

$$
\begin{array}{ll}
& =\sqrt{166.29531} \\
\text { S.D. } & =12.869
\end{array}
$$

For median and quartiles, we consider the following table:

Weight	C.B.	F	C.f	
$\begin{aligned} & 118-126 \\ & 127-135 \\ & 136-144 \\ & 145-153 \\ & 154-162 \\ & 163-171 \end{aligned}$	117.5-126.5	20	20	$\begin{array}{ll} \rightarrow & Q_{1} \\ \rightarrow & \text { Median } \\ \rightarrow & Q_{3} \end{array}$
	126.5-135.5	35	55	
	135.5-144.5	49	104	
	144.5-153.5	32	136	
	153.5-162.5	25	161	
	162.5-171.5	14	175	
$\text { Median } \quad=l+\frac{h}{f}\left(\frac{n}{2}-c\right)$				
$\frac{n}{2} \quad=\frac{175}{2}=87$				
$1 \quad=135.5$				
$\mathrm{h} \quad=9$				
$\mathrm{f} \quad=49$				
C $\quad=55$				
Median	$=135.5+\frac{9}{49}(87.5-55)$			
	$=134.5+5.969$			
Median $\quad=141.47$				
$\mathrm{Q}_{1} \quad=l+\frac{h}{f}$				
\underline{n}	$=\frac{175}{4}=43.75$			
1	$=126.5$			
h	$=9$			
f	$=35$			
C	$=20$			
Q ${ }_{1}$	$=126.5+\frac{9}{35}(43.75-20)$			
	$=126.5$			

Business Statistics \& Mathematics Punjab University
 B.Com Part 1 Solved Past Papers

$$
\mathrm{Q}_{1} \quad=132.61
$$

$$
\begin{array}{ll}
\mathrm{Q}_{3} & =l+\frac{h}{f}\left(\frac{3 n}{4}-c\right) \\
\frac{3 n}{4} & =\frac{3 \times 175}{4}=131.25 \\
\mathrm{Q}_{3} & =144.5+\frac{9}{32}(131.25-104) \\
& =144.5+7.664 \\
\mathrm{Q}_{3} & =152.16
\end{array}
$$

QUESTION NO. 2

Commodity	2008		2012		$\mathbf{p}_{\text {n }} \mathbf{q}_{\mathbf{o}}$	$\mathbf{p}_{0} \mathbf{q}_{0}$	$\mathrm{p}_{\mathrm{n}} \mathrm{q}_{\mathrm{n}}$	$\mathbf{p}_{0} \mathbf{q}_{\text {n }}$
	p_{0}	q_{0}	p_{n}	q_{n}				
A	5.0	80	8.7	100	696	400	870	500
B	3.6	90	5.7	95	- 513	324	541.5	342
C	3.1	20	4.6	30	92	92	138	93
				,	1301	786	1549.5	935

Laspreyr's price index

Paasche's price index

$$
\begin{aligned}
& =\frac{\sum p_{n} q_{o}}{\sum p_{o} q_{o}} \times 100 \\
& =\frac{1301}{786} \times 100 \\
& =165,52 \\
& =\frac{\sum p_{n} q_{n}}{\sum p_{o} q_{n}} \times 100 \\
& =\frac{1549.5}{935} \times 100 \\
& =165.72
\end{aligned}
$$

Marshall's price index $\quad=\frac{\sum p_{n} q_{o}+\sum p_{n} q_{n}}{\sum p_{o} q_{o}+\sum p_{o} q_{n}} \times 100$

$$
=\frac{1301+1549.5}{786+935} \times 100
$$

$$
=\frac{280.5}{1721} \times 100
$$

$$
=165.63
$$

Business Statistics \& Mathematics Punjab University B.Com Part 1 Solved Past Papers

Fisher's price index

$$
\begin{aligned}
& =\sqrt{\text { Laspeyre's index } \times \text { Paasche's index }} \\
& =\sqrt{165.52 \times 165.72} \\
& =165.621
\end{aligned}
$$

QUESTION NO. 3

(i) $\quad \mathrm{H}_{0}: \quad$ Income and type of school are independent.
H_{I} : Income and type of school are dependent.
(ii) Level of significance $=\alpha=5 \%=0.05$
(iii) Test statistic following x^{2} distribution at 1 d.f. $x^{2}=\sum \frac{(O-E)^{2}}{E}$
(iv) Critical Region:

$$
\begin{aligned}
& x_{c a l}^{2} \geq x_{t a b}^{2} \\
& x_{c a l}^{2} \geq 3.84
\end{aligned}
$$

Income	Private	Government	Total
High	$\frac{1000 \times 656}{1600}=410$	$\frac{1000 \times 944}{1600}=590$	1000
Low	$\frac{600 \times 656}{1600}=246$	$\frac{600 \times 944}{1600}=354$	600
	656	944	1600

Calculation of x^{2} value is shown below

O (Observed Frequency)	E (Expected Frequency)	$\mathbf{O}-\mathbf{E}$	$\mathbf{(O - ~ E) ~}^{\mathbf{2}}$	$(\mathbf{O}-\mathbf{E})^{\mathbf{2}} / \mathbf{E}$
494	410	84	7056	17.20976
506	590	-84	7056	11.95932
162	246	-84	7056	28.68293
438	354	84	7056	19.93220
				$\mathbf{7 7 . 7 8 4 2 1}$

Conclusion: Since $x_{\text {cal }}^{2}=77.78>3.84$ so it falls in critical region, we reject H_{0} and conclude that income and type of school are dependent.

Business Statistics \& Mathematics Punjab University B.Com Part 1 Solved Past Papers

QUESTION NO. 4

(i)

Population elements $=0,3,6,12,15,18$
Population Size $\quad=\mathrm{N}=6$
Sample Size $\quad=n=3$
Let x denotes the element of population

\mathbf{X}	$\mathbf{X}^{\mathbf{2}}$
0	0
3	9
6	36
12	144
15	225
18	324
$\sum \mathrm{X}=54$	$\sum \mathrm{X}^{2}=738$

Population mean $\boldsymbol{\mu}=\frac{\sum \mathrm{X}}{\mathrm{N}}=\frac{54}{6}=9$
Population Variance $=\sigma^{2}=\frac{\sum X^{2}}{N}-\left(\frac{\Sigma X}{N}\right)^{2}$

$$
\sigma^{2}=\frac{738}{6}-(9)^{2}=123-81=42
$$

Number of all possible samples without replacement $={ }^{\mathrm{N}} \mathrm{C}_{\mathrm{n}}={ }^{6} \mathrm{C}_{3}=20$
Sample with corresponding means are given below:

Samples	Sample mean $(\overline{\mathbf{x}})$	Samples	Sample mean $(\overline{\mathbf{x}})$
$0,3,6$	3	$3,6,12$	7
$0,3,12$	5	$3,6,15$	8
$0,3,15$	6	$3,6,18$	9
$0,3,18$	7	$3,12,15$	10
$0,6,12$	6	$3,12,18$	11
$0,6,15$	7	$3,15,18$	12
$0,6,18$	8	$6,12,15$	11
$0,12,15$	9	$6,12,18$	12
$0,12,18$	10	$6,15,18$	13
$0,15,18$	11	$12,15,18$	15

Business Statistics \& Mathematics Punjab University B.Com Part 1 Solved Past Papers

Sampling distribution of means is given below:

$\overline{\mathbf{x}}$	\mathbf{f}	$\mathbf{P}(\overline{\mathbf{x}})$	$\overline{\mathbf{x}} \cdot \mathbf{P}(\overline{\mathbf{x}})$	$\overline{\mathbf{x}}^{\mathbf{2}} \cdot \mathbf{P}(\overline{\mathbf{x}})$
3	1	$1 / 20$	$3 / 20$	$9 / 20$
5	1	$1 / 20$	$5 / 20$	$25 / 20$
6	2	$2 / 20$	$12 / 20$	$72 / 20$
7	3	$3 / 20$	$21 / 20$	$147 / 20$
8	2	$2 / 20$	$16 / 20$	$128 / 20$
9	2	$2 / 20$	$18 / 20$	$162 / 20$
10	2	$2 / 20$	$20 / 20$	$200 / 20$
11	3	$3 / 20$	$33 / 20$	$363 / 20$
12	2	$2 / 20$	$24 / 20$	$288 / 20$
13	1	$1 / 20$	$13 / 20$	$169 / 20$
15	1	$1 / 20$	$15 / 20$	$225 / 20$
	$\sum \mathbf{f}=\mathbf{2 0}$		$\mathbf{1 8 0 / 2 0}$	$\mathbf{1 7 8 8 / 2 0}$

Mean of sampling distribution of means

$$
\mu_{\overline{\mathrm{x}}} \quad=\overline{\mathrm{x}} \cdot \mathrm{P}(\overline{\mathrm{x}}) \quad=\frac{180}{20}=9
$$

Variance of sampling Distribution

$$
\begin{aligned}
& \sigma_{\overline{\mathrm{x}}}^{2} \quad=\sum \overline{\mathbf{x}}^{2} \mathbf{P}(\overline{\mathbf{x}})-\left[\sum \overline{\mathbf{x}} \mathbf{P}(\overline{\bar{x}})\right]^{2} \\
&=\frac{1788}{20}-(9)^{2} \\
&=89.4-81 \\
& \sigma_{\overline{\mathrm{x}}}^{2} \quad=8.4
\end{aligned}
$$

(i) Relationship between sampling distribution of the means $\mu_{\overline{\mathrm{x}}}$ and population mean (μ) is:

Verification:

$$
\mu_{\overline{\mathrm{x}}} \quad=\mu
$$

Verification:

$$
\mu_{\overline{\mathrm{x}}}=9, \mu=9
$$

Hence, $\mu_{\overline{\bar{x}}} \quad=\mu$ (Both are equal)

Business Statistics \& Mathematics Punjab University
 B.Com Part 1 Solved Past Papers

(ii) Relationship between variance of sampling distribution ($\sigma_{\overline{\mathrm{x}}}{ }^{2}$) and population variance σ^{2} is:

$$
\sigma_{\overline{\mathrm{x}}}^{2} \quad=\frac{\sigma^{2}}{\mathrm{n}} \cdot \frac{\mathrm{~N}-\mathrm{n}}{\mathrm{~N}-1}
$$

Verification: Since, $\quad \sigma_{\overline{\mathrm{x}}}{ }^{2}=8.4$

$$
\begin{aligned}
& \text { And } \frac{\sigma^{2}}{\mathrm{n}} \cdot \frac{\mathrm{~N}-\mathrm{n}}{\mathrm{~N}-1} \\
& \begin{aligned}
=\frac{42}{3} & \times \frac{6-3}{6-1} \\
& =14 \times \frac{3}{5} \\
& =8.4
\end{aligned}
\end{aligned}
$$

So,

$$
\sigma_{\overline{\mathrm{x}}}{ }^{2} \quad=\frac{\sigma^{2}}{\mathrm{n}} \cdot \frac{\mathrm{~N}-\mathrm{n}}{\mathrm{~N}-1}=8.4 \text { Verified }
$$

QUESTION NO. 5

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 3 & 5 \\
4 & -2 & 7 \\
3 & 2 & -4
\end{array}\right] \\
& |A|=\left|\begin{array}{ccc}
1 & 3 & 5 \\
4 & -2 & 7 \\
3 & 2 & -4
\end{array}\right|
\end{aligned}
$$

Expanding from $1^{\text {st }}$ Row:

$$
\begin{aligned}
& |A|=1\left|\begin{array}{cc}
-2 & 7 \\
2 & -4
\end{array}\right|-3\left|\begin{array}{cc}
4 & 7 \\
3 & -4
\end{array}\right|+5\left|\begin{array}{cc}
4 & -2 \\
3 & 2
\end{array}\right| \\
= & 1(8-14)-3(-16-21)+5(8+6) \\
= & 1(-6)-3(-37)+5(14)
\end{aligned}
$$

Business Statistics \& Mathematics Punjab University
 B.Com Part 1 Solved Past Papers

$=-6+111+70$
$|A|=175$
$\operatorname{Adj} A=\left(\begin{array}{c}\left|\begin{array}{cc}-2 & 7 \\ 2 & -4\end{array}\right|-\left|\begin{array}{cc}4 & 7 \\ 3 & -4\end{array}\right|+\left|\begin{array}{cc}4 & -2 \\ 3 & 2\end{array}\right| \\ -\left|\begin{array}{cc}3 & 5 \\ 2 & -4\end{array}\right|\left|\begin{array}{cc}1 & 5 \\ 3 & -4\end{array}\right|-\left|\begin{array}{cc}1 & 3 \\ 3 & 2\end{array}\right| \\ \left|\begin{array}{cc}3 & 5 \\ -2 & 7\end{array}\right|-\left|\begin{array}{cc}1 & 5 \\ 4 & 7\end{array}\right|-\left|\begin{array}{cc}1 & 3 \\ 4 & -2\end{array}\right|\end{array}\right)^{\mathrm{t}}$
$=\left[\begin{array}{ccc}(8-14) & -(-16-21) & (8+6) \\ -(-12-10) & (-4-15) & -(2-9) \\ (21+10) & -(7-20) & (-2-12)\end{array}\right)^{t}$
$=\left[\begin{array}{ccc}-6 & 37 & 14 \\ 22 & -19 & 7 \\ 31 & 13 & -14\end{array}\right]^{\mathrm{t}}$
After taking Transpose
Adj $\mathrm{A}=\left[\begin{array}{ccc}-6 & 22 & 31 \\ 37 & -19 & 13 \\ 14 & 7 & -14\end{array}\right]$

$$
\mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{adj} . \text { (A) }
$$

$$
=\frac{1}{175}\left[\begin{array}{ccc}
-6 & 22 & 31 \\
37 & -19 & 13 \\
14 & 7 & -14
\end{array}\right]
$$

Business Statistics \& Mathematics Punjab University
 B.Com Part 1 Solved Past Papers

2009-2018
$=\left[\begin{array}{ccc}\frac{-6}{175} & \frac{22}{175} & \frac{31}{175} \\ \frac{37}{175} & \frac{-19}{175} & \frac{13}{175} \\ \frac{14}{175} & \frac{7}{175} & \frac{-14}{175}\end{array}\right]$

QUESTION NO. 6

(a) $\quad 4 x-3 y=10$

$$
5 x-7 y=6
$$

Multiplying eq. (1) by 5 and eq. (2) by 4 and then subtracting the resultant equations:
Or (i) 20x $=15 \mathrm{y} \quad=50$

$$
\text { (ii) } \begin{aligned}
-20 x \pm 28 y & =24 \\
13 y & =26 \\
y & =\frac{26}{13}=2
\end{aligned}
$$

By putting the value of y in equation (i):

$$
\begin{array}{ll}
4 \mathrm{x}-3(2) & =10 \\
4 \mathrm{x}-6 & =10 \\
4 \mathrm{x} & =10+6 \\
4 \mathrm{x} & =16 \\
\mathrm{x} & =16 / 4 \\
\mathrm{x} & =4
\end{array}
$$

Hence, Solution set $=\{[4,2]\}$

QUESTION NO. 6

(b) Let,

Length of rectangular plot $=x$ yards
Width of rectangular plot $=y$ yards
Area of rectangular plot $=2000$ sq.yards
$\mathrm{xy}=2000$

Total length of the fencing $=180$ yards $=$ Perimeter

$$
\begin{array}{ll}
2 \mathrm{x}+2 \mathrm{y}= & 180 \\
2(\mathrm{x}+\mathrm{y})= & 180 \\
\mathrm{X}+\mathrm{Y}= & 180 / 2 \\
\mathrm{X}+\mathrm{y}=90
\end{array}
$$

From eq. (2)

$$
Y \quad=90-x
$$

Putting in rq. (1):
$X(90-x)=2000$
$90 x-x^{2}=2000$

Or $\quad \mathrm{x} 2-90 \mathrm{x}+2000=0$

a	$=$	1
b	$=$	-90
c	$=$	2000

Business Statistics \& Mathematics Punjab University

$$
\begin{aligned}
\mathrm{x} & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-90) \pm \sqrt{(-90)^{2}-4(1)(2000)}}{2(1)} \\
& =\frac{90 \pm \sqrt{8100-8000}}{2}
\end{aligned}
$$

$$
=\frac{90 \pm \sqrt{100}}{2}
$$

$$
=\quad \frac{90 \pm 10}{2}
$$

$$
\mathrm{X}=\frac{90+10}{2}, \quad \mathrm{X}=\frac{90-10}{2}
$$

$$
=\frac{100}{2} \quad, \quad, \quad=\frac{80}{2}
$$

$$
50
$$

40

For $\mathrm{X}=50$

Putting in $y=90-x$

$$
\begin{aligned}
& =90-50 \\
\mathrm{Y} & =40
\end{aligned}
$$

For $\mathrm{X}=40$

Putting in $y=90-x$

$$
=90-40
$$

Business Statistics \& Mathematics Punjab University
 B.Com Part 1 Solved Past Papers

$$
Y=50
$$

Hence,

If length of the plot	$=$	50 yards
Then width of the plot	$=$	40 Yards

And if
If length of the plot $=40$ yards
Then width of the plot $=50$ Yards

QUESTION NO. 7

(a) The given geometric series is:

$$
\begin{aligned}
& 1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \frac{1}{16},-\frac{1}{32}, \ldots \ldots \ldots \\
& \mathrm{a}=1
\end{aligned}
$$

Common ratio $=\quad \frac{-1 / 2}{1}=-\frac{1}{2}=\mathrm{r}$
Since, $|r|=|-1 / 2|<1$
So, we use the formula for sum as:

$$
\begin{array}{cccc}
\text { Where } & \begin{array}{ccc}
\mathrm{S}_{\mathrm{n}} & = & \mathrm{a}\left(\frac{a-r n}{1-r}\right) \\
\mathrm{a} & = & 1 \\
\mathrm{r} & = & -\frac{1}{2} \\
\mathrm{n} & = & 10
\end{array} \\
\mathrm{~S}_{10}= & \frac{1-\left(-\frac{1}{2}\right) 10}{1-\left(-\frac{1}{2}\right)} \\
= & \left(\frac{1-\frac{1}{2} 10}{1+\frac{1}{2}}\right)
\end{array}
$$

Business Statistics \& Mathematics Punjab University
 B.Com Part 1 Solved Past Papers

$$
\begin{aligned}
& =\quad \frac{\left(1-\frac{1}{1024}\right)}{\frac{3}{2}} \\
& =\quad \frac{\left(\frac{1024-1}{1024}\right)}{\frac{3}{2}} \\
& =\left(\frac{1023}{1024}\right) \times \frac{3}{2} \\
& \mathrm{~S}_{10}=\left(\frac{341}{512}\right)
\end{aligned}
$$

Hence, Sum of 10 terms of geometric series is $\frac{341}{512}$
(b) $1^{\text {st }}$ alternative of the executive $\quad=\quad$ Rs. 240,000
$2^{\text {nd }}$ Alternative can be written in monthly sequence for first month, $2^{\text {nd }}$ month, $3^{\text {rd }}$ month, etc as below:

Rs. 100 , Rs. 200 , Rs. $400, \ldots \ldots$ upto 12 terms.

This makes a geometric sequence where:

$$
\begin{array}{ll}
\mathrm{a} & =100 \\
\mathrm{r} & =\frac{200}{100}=2 \\
\mathrm{n} & =12
\end{array}
$$

Sum of 12 month salary $=\mathrm{S}_{\mathrm{n}}=\frac{a\left(r^{\mathrm{n}}-1\right)}{r-1}$

$$
=\quad \frac{100\left(2^{12}-1\right)}{2-1}
$$

$$
=100(4096-1)
$$

$$
=100(4095)
$$

$$
=\text { Rs. } 409,500
$$

Business Statistics \& Mathematics Punjab University B.Com Part 1 Solved Past Papers

Per year salary for $1^{\text {st }}$ alternative $=\quad$ Rs. 240,000
Per year salary for $2^{\text {nd }}$ alternative $=\quad$ Rs. 409,500
Since, Rs. $409,500>$ Rs. 240,000
The executive should prefer $2^{\text {nd }}$ alternative.

QUESTION NO. 8

(a) Principal amount $=P \quad=$ Rs. 4,500
Rate of interest for $1^{\text {st }}$ year $r \quad=4 \%$
Compound amount after first year $=P(1+r)^{\mathrm{n}}$
Where $\mathrm{m}=1$ We have:

$$
=4500(1+0.04)^{1}
$$

$$
=4500(1.04)
$$

$$
=\text { Rs. } 4680
$$

Principal amount for $2^{\text {nd }}$ Year $=\quad P \quad=$ Rs. 4680
Rate of interest for $2^{\text {nd }}$ year $r \quad=5 \%$
Compound amount after $2^{\text {nd }}$ year $\quad=\mathrm{P}(1+\mathrm{r})^{\mathrm{n}}$
$=4680(1+0.05)$
$=4680(1.05)$
$=$ Rs. 4914
Principal amount for $3^{\text {rd }}$ Year $\quad=\quad \mathrm{P} \quad=$ Rs. 4914
Rate of interest for $3^{\text {rd }}$ year $r=6 \%$
Compound amount after $3^{\text {rd }}$ year $\quad=\mathrm{P}(1+\mathrm{r})^{\mathrm{n}}$
$=4914(1+0.06)$
$=4914(1.06)$
$=$ Rs. 5208.84
Hence, Compound interest for 3 Years $=5208.84-4500$

$$
=\quad \text { Rs. } 708.84
$$

Business Statistics \& Mathematics Punjab University B.Com Part 1 Solved Past Papers

(b) Since the investment of equal size made at the end of each quarter, and we have to find the accumulated value. The problem is related to sum of ordinary annuity we have

$$
\begin{aligned}
& \mathrm{R}=\text { Rs. } 5000 \text { (Each Periodic Payment) } \\
& \mathrm{I}=8 \% / 4=2 \%=0.02 \text { (Quarterly Interest Rate) } \\
& \mathrm{n}-5 \times 4=20 \text { Quarters (Number of conversion periods) }
\end{aligned}
$$

So, the required accumulated value is given by the formula:
$\mathrm{S}_{\mathrm{n}}=\mathrm{R}\left[\frac{(1+i)^{n}-1}{i}\right]$
$\mathrm{S}_{\mathrm{n}}=5000\left[\frac{(1+0.02)^{20}-1}{0.02}\right]$
$\mathrm{S}_{\mathrm{n}}=5000\left[\frac{(1.02)^{20}-1}{0.02}\right]$
$\mathrm{S}_{\mathrm{n}}=$ Rs. 121486.849

